Search results for "Biological neural network"

showing 10 items of 53 documents

Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network

2018

Finding food and remaining at a food source are crucial survival strategies. We show how neural circuits and signaling molecules regulate these food-related behaviors in Caenorhabditis elegans. In the absence of food, AVK interneurons release FLP-1 neuropeptides that inhibit motorneurons to regulate body posture and velocity, thereby promoting dispersal. Conversely, AVK photoinhibition promoted dwelling behavior. We identified FLP-1 receptors required for these effects in distinct motoneurons. The DVA interneuron antagonizes signaling from AVK by releasing cholecystokinin-like neuropeptides that potentiate cholinergic neurons, in response to dopaminergic neurons that sense food. Dopamine al…

0301 basic medicineCell signalingSensory Receptor CellsInterneuronDopamineSensationNeuropeptideOptogeneticsBiologyReceptors DopamineAnimals Genetically Modified03 medical and health sciencesChannelrhodopsinsDopamineNeural PathwaysBiological neural networkmedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsGeneral NeuroscienceNeuropeptidesdigestive oral and skin physiologyDopaminergicOptogenetics030104 developmental biologymedicine.anatomical_structureFoodDopamine receptorCalciumNeuroscienceLocomotionmedicine.drugNeuron
researchProduct

Biological investigation of neural circuits in the insect brain

2018

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabil…

0301 basic medicineCognitive sciencebiologyWorking memoryComputer sciencefungiForagingEnergy Engineering and Power Technologybiology.organism_classification03 medical and health sciences030104 developmental biology0302 clinical medicineEngineering (all)Orientation (mental)Mushroom bodiesBiological neural networkRobotMathematics (all)Biotechnology; Chemical Engineering (all); Mathematics (all); Materials Science (all); Energy Engineering and Power Technology; Engineering (all)Chemical Engineering (all)Materials Science (all)Drosophila melanogasterDrosophila030217 neurology & neurosurgeryBiotechnology
researchProduct

The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function

2021

It is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion…

0301 basic medicineComputer scienceCognitive Neurosciencemedia_common.quotation_subjectved/biology.organism_classification_rank.speciesNeuroscience (miscellaneous)Neurosciences. Biological psychiatry. Neuropsychiatry03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDevelopment (topology)Biological neural networkModel organismFunction (engineering)DrosophilaElectronic circuitmedia_commonbiologyved/biologyvariabilityfungiconnectomebiology.organism_classificationSensory Systemscritical periodlocomotion030104 developmental biologyConnectomeDrosophilaDrosophila melanogasterNeurosciencecircuit030217 neurology & neurosurgeryRC321-571Frontiers in Neural Circuits
researchProduct

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)ta3112Radio spectrumSynchronizationlcsh:RC321-571Correlation03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineBiological neural networkMethodsTime domainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySimulationEvent (probability theory)rat cortical cellsMEAmicroelectrode array213 Electronic automation and communications engineering electronicsspectral entropyInformation processingCorrectiondeveloping neuronal networksMultielectrode array217 Medical engineering030104 developmental biologycorrelationmouse cortical cellsBiological systemsynchronization030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development

2020

VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of …

0301 basic medicineNeurogenesisSynaptogenesisNeurotransmissionInhibitory postsynaptic potentialHippocampusSynaptic Transmission03 medical and health sciencesGlutamatergicMice0302 clinical medicineVGCCsexcitation to inhibition balanceBiological neural networkPremovement neuronal activityAnimalsHumansCalcium SignalingResearch ArticlesNeuronssynaptogenesisChemistryGeneral NeuroscienceGlutamate receptornetwork connectivityRats030104 developmental biologyHEK293 CellsExcitatory postsynaptic potentialalpha2delta subunitsCalcium ChannelsNerve NetNeuroscience030217 neurology & neurosurgeryCellular/MolecularThe Journal of Neuroscience
researchProduct

Tuning neural circuits by turning the interneuron knob

2017

Interneurons play a critical role in sculpting neuronal circuit activity and their dysfunction can result in neurological and neuropsychiatric disorders. To temporally structure and balance neuronal activity in the adult brain interneurons display a remarkable degree of subclass-specific plasticity, of which the underlying molecular mechanisms have recently begun to be elucidated. Grafting new interneurons to pre-existing neuronal networks allows for amelioration of circuit dysfunction in rodent models of neurological disease and can reopen critical windows for circuit plasticity. The crucial contribution of specific classes of interneurons to circuit homeostasis and plasticity in health an…

0301 basic medicineNeuronal PlasticityInterneurongenetic structuresGeneral NeurosciencefungiBiology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemInterneuronsmedicineBiological neural networkPremovement neuronal activityAnimalsHomeostasisHumansNervous System DiseasesReprogrammingNeuroscience030217 neurology & neurosurgery
researchProduct

A stable brain from unstable components: Emerging concepts and implications for neural computation.

2017

Neuroscientists have often described the adult brain in similar terms to an electronic circuit board- dependent on fixed, precise connectivity. However, with the advent of technologies allowing chronic measurements of neural structure and function, the emerging picture is that neural networks undergo significant remodeling over multiple timescales, even in the absence of experimenter-induced learning or sensory perturbation. Here, we attempt to reconcile the parallel observations that critical brain functions are stably maintained, while synapse- and single-cell properties appear to be reformatted regularly throughout adult life. In this review, we discuss experimental evidence at multiple …

0301 basic medicineNeuronsArtificial neural networkGeneral NeuroscienceComputationModels NeurologicalBrainSensory systemSynapse03 medical and health sciences030104 developmental biology0302 clinical medicineModels of neural computationBiological neural networkAnimalsHumansNeural Networks ComputerPsychologyNeuroscience030217 neurology & neurosurgeryDynamic equilibriumElectronic circuitNeuroscience
researchProduct

Optogenetics: a new method for the causal analysis of neuronal networks in vivo

2012

Abstract The causal analysis of neuronal network function requires selective manipulations of ge­netically defined neuronal subpopulations in the intact living brain. Here, we highlight the method of optogenetics, which meets those needs. We cover methodological aspects, limitations, and practical applications in the field of neurosciences. The fundamentals of optogenetics are light-sensitive transmembrane channels and light-driven ion pumps, which can be genetically encoded, without requir­ing the application of exogenous cofactors. These opsins are expressed in neurons by means of viral gene transfer and cell-specific promoters. Light for stimulation can be non- or minimally invasively de…

0301 basic medicineOpsinDepolarizationOptogeneticsBiologyHyperpolarization (biology)NeurophysiologyGenetically modified organism03 medical and health sciences030104 developmental biology0302 clinical medicineBiological neural networkPremovement neuronal activityNeuroscience030217 neurology & neurosurgerye-Neuroforum
researchProduct

The quality of cortical network function recovery depends on localization and degree of axonal demyelination

2016

AbstractMyelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced…

0301 basic medicinePathologymedicine.medical_specialtyImmunologyCentral nervous systemSensationMedizinSensory systemBiologyAdaptive ImmunityWhite matter03 medical and health sciencesBehavioral NeuroscienceCuprizoneMice0302 clinical medicineWhite matter lesionmedicineBiological neural networkAnimalsRemyelinationGray MatterPathologicalMyelin SheathCerebral CortexBehavior AnimalEndocrine and Autonomic SystemsMultiple sclerosisLysophosphatidylcholinesThalamocortical systemRecovery of Functionmedicine.diseaseWhite MatterElectrodes ImplantedMice Inbred C57BLGray matter lesion030104 developmental biologymedicine.anatomical_structureRemyelinationDemyelinationTonotopyNerve NetNeuroscience030217 neurology & neurosurgeryDemyelinating Diseases
researchProduct